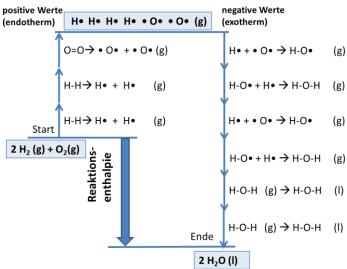
WOZU WIRD DIE ENERGIE IN CHEMISCHEN REAKTIONEN VERWENDET?

- 1. Lies die Informationen zur Energie in chemischen Prozessen → Zusammenfassung "Kapitel 4:
 - 1) Definitionen und 3) Berechnungen der Energie" genau durch

Die Energie chemischer Reaktionen kann auf zwei verschiedene Arten berechnet werden:


- Die Differenz der Enthalpien der Edukte und der Produkte
- b. oder näherungsweise **über die einzelnen Energieschritte** im Zuge einer Reaktion: (beachte: die Energien zur Bindungsbildung und -trennung

sind prinzipiell für die Gasphase tabelliert)

mögliche Energieschritte:				
exotherm:	endotherm:			
Bindungsbildung	Brechen von Bindungen			
Erstarren	Schmelzen			
Kondensieren	Verdampfen			
Posublimioron	Sublimioron			

Beispiel: Bei der Reaktion $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$ werden folgende Einzelschritte addiert: 2x Trennung H-H; 1x Trennung O=O; 4x Bildung H-O; 2x Kondensation H₂O(g) zu H₂O(l)

Einzelschritte der Reaktion: 2 $H_2(g) + O_2(g) \rightarrow 2 H_2O(l)$

2. Berechne die Energie der Reaktionen a) b) und c) näherungsweise über die Einzelschritte mit folgenden Werten: (Doppelbindung zählt nicht doppelt)

mittlere Bindungsenergien: (positiver Wert→ Trennung; negativer Wert→ Bildung)					
H-H: 436 kJ/mol		O=O: 498 kJ/mol		H-O: 463 kJ/mol	
H-C: 413 kJ/mol		C=O: 745 kJ/mol		C-C: 348 kJ/mol	
	Schmelzenthalpie (negativer		Verdampfungsenthalpie (negativer		
H ₂ O	Wert→Erstarren): 6kJ/mol		Wert→Kondensieren): 41kJ/mol		

- a) $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$
- b) $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(l)$
- c) $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$
- 3. Lösungsblatt in die Mappe einheften.