MATERIE STOFFEIGENSCHAFTEN AGGREGATZUSTÄNDE

- 1) MATERIE: Alles mit Volumen und Masse lässt sich einteilen in
 - Reinstoffe: Stoffe aus einer Komponente, lässt sich einteilen in
 - o **Verbindungen:** bestehen aus Grundeinheiten mit **verschiedenen Atomsorten**;
 - meist Moleküle z.B.: H₂O, CO₂
 - o **Elemente:** bestehen nur aus **einer Atomsorte**; z.B.: C, Fe, Ne
 - manche Elemente kommen als Moleküle vor: O2, P4 S8,
 - die Elemente sind im Periodensystem aufgelistet
 - **Gemische:** Stoffe aus **mehreren Komponenten**, lassen sich einteilen in
 - o homogene Gemische: alle Komponenten sind gleichmäßig durchmischt
 - o heterogene Gemische: die Komponenten sind nicht gleichmäßig durchmischt

2) STOFFEIGENSCHAFTEN

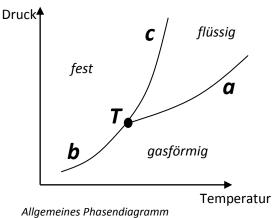
	TEILCHENEBENE	ZEICHEN	EINHEIT
VOLUMEN	Ausdehnung eines	V	m ³ oder 1 Liter = 1 dm ³
	Stoffes		
MASSE	bestimmt von	m	kg oder g
	Anzahl und Art der		
	Teilchen		
DICHTE =	Wie viele	ρ	g/cm³ oder kg/dm³
Masse / Volumen	Teilchen sind in	(= "rho")	
	einem bestimmten		
	Raum		
TEMPERATUR	Bewegung der	Т	°C oder K (K = Kelvin)
	Teilchen		0°C = 273,15 K
			OK = absoluter Nullpunkt
DRUCK	Teilchen treffen auf	р	$Pa = kg/ms^2 (Pa = Pascal)$
	eine Außenwand		oder 1 bar = 100000 Pa
			("Normaldruck" sind
			101325 Pa = 1 atm)

3) AGGREGATZUSTAND

7 1100111111111111111111111111111111111				
FEST (s)	bestimmtes Volumen	Teilchen aneinander		
	bestimmte Form	• geordnet		
FLÜSSIG (1)	 bestimmtes Volumen 	Teilchen aneinander		
	Form von Umgebung und	ungeordnet		
	Schwerkraft bestimmt			
Gasförmig (g)	Volumen und Form von	Teilchen nicht aneinander		
	Umgebung bestimmt	ungeordnet		

4) AGGREGATZUSTANDSÜBERGÄNGE

Die **Temperatur** dieser Übergänge hängt hauptsächlich von der **Masse** und der **Anziehung** der Teilchen ab.


ERHITZEN: Während der Übergänge (s→I, s→g, I→g) bleibt die Temperatur (bei Reinstoffen) konstant, da die zugeführte Energie nicht zum Erwärmen, sondern zum Ändern des Aggregatzustands verwendet wird.

ABKÜHLEN: Bei den Übergängen (g→I, g→s, I→s) bleibt die Temperatur nahezu konstant, da die Aggregatzustandsänderung hier Energie liefert und somit der Abkühlung entgegen wirkt

Aggregatzustandsanderung nier Energie liefert und somit der Abkunlung entgegen wirkt.				
SCHMELZEN	Temperaturzufuhr (vermehrte	nahezu druckunabhängig, da		
(ERSTARREN)	Bewegung der Teilchen) führt dazu,	beim Schmelzen kaum		
,	dass die Anziehungskräfte der Teilchen	Volumensänderung stattfindet		
	nicht mehr ausreichen um eine			
	geordnete Struktur aufrecht zu			
	erhalten			
SIEDEN	Temperaturzufuhr (vermehrte	Außendruck hat starken		
(KONDENSIEREN)	Bewegung der Teilchen) führt dazu,	Einfluss auf Siedetemperatur,		
()	dass immer mehr Teilchen die	da starke Volumensänderung		
	Flüssigkeit in die Gasphase verlassen,	beim Sieden von flüssig nach		
	(→ das ist der Dampfdruck) wenn der	gasförmig		
	Dampfdruck gleich dem Außendruck			
	ist, siedet die Flüssigkeit			
SUBLIMIEREN	Temperaturzufuhr (vermehrte	Außendruck hat starken		
(RESUBLIMIEREN)	Bewegung der Teilchen) führt dazu,	Einfluss auf		
(,	dass die Anziehungskräfte der Teilchen	Sublimationstemperatur, da		
	nicht mehr ausreichen um eine	starke Volumensänderung		
	geordnete Struktur aufrecht zu	beim Sublimieren von fest nach		
	erhalten,	gasförmig		
	die Anziehungskräfte und Masse der			
	Teilchen sind dabei so klein, dass die			
	Teilchen sofort in die Gasphase			
	übergehen			

5) Phasendiagramm

Bei einem Phasendiagramm werden die Aggregatzustände eines Stoffes in Abhängigkeit von Druck und Temperatur angegeben:

Allgemeines Phasendiagramm

©AGMueller/IWartusch2015V6

- **T)** Tripelpunkt: hier treffen die drei Aggregatzustände aufeinander; ebenso wie
- a) die Siedepunktskurve
- b) die Sublimationskurve
- c) die Schmelzkurve