
GRUNDLAGEN DER BIOCHEMIE - STOFFWECHSELWEGE

1) DIE WICHTIGSTEN STOFFWECHSELWEGE:

- Fette und Kohlenhydrate aus der Nahrung nutzt der Körper hauptsächlich zur Energiegewinnung.
- **Proteine** aus der Nahrung werden zur **Energiegewinnung** und als **Bausteine** verwendet.


2) ÜBERSICHT ÜBER DEN ENERGIESTOFFWECHSEL

3) WICHTIGE BIOCHEMISCHE MOLEKÜLE

3.1. ATP: ADENOSINTRIPHOSPHAT

Wird auf ein Molekül ein **Phosphatrest** übertragen, bedeutet das eine **Erhöhung der Energie** dieses Moleküls. **ATP überträgt Phosphatreste** auf andere Moleküle und ist somit ein zentraler Energielieferant im Stoffwechsel. Wir atmen Sauerstoff ein um hauptsächlich ATP zu erzeugen.

ADP ist Adenosindiphosphat, AMP ist Adenosinmonophosphat

3.2 NAD*: NICOTINAMIDADENINDINUCLEOTID

NAD⁺ ist ein Oxidationsmittel und NADH/H⁺ ist ein Reduktionsmittel in biochemischen Reaktionen an funktionellen Gruppen mit Sauerstoff. Z.B.:

NADH/H⁺ ist die **energetisch höher**e Form. Man benötigt **3 ATP**-Moleküle um **ein NADH/H**⁺ herzustellen. Umgekehrt liefert ein **NADH/H**⁺ 3 ATP mit Hilfe des eingeatmeten Sauerstoffs in der Atmungkette (s.u.). (es gibt von diesem Molekül auch eine zusätzlich phophorylierte Form: NADP⁺)

3.3. FAD: FLAVINADENINDINUCLEOTID

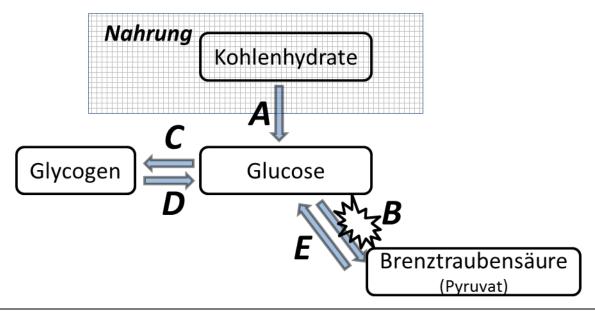
FAD ist ein Oxidationsmittel und FADH2 ist ein Reduktionsmittel in biochemischen Reaktionen ohne Sauerstoff.

7.B.:

FADH₂ ist die energetisch höhere Form. Man benötigt 2 ATP-Moleküle um ein FADH₂ herzustellen. Umgekehrt liefert ein FADH₂ zwei ATP mit Hilfe des eingeatmeten Sauerstoffs in der Atmungkette (s.u.).

3.4 COENZYM-A

CoenzymA ist ein **Transportmolekül** für Säurereste. An einem Ende hat dieses Molekül eine **–SH Gruppe**, welche ebenso wie –OH Gruppen **mit Säuren** einen **Ester** bilden kann:


So ist in Acetyl-Coenzym-A ein Essigsäurerest an die HS-Gruppe des Coenzym-A gebunden (s.o.)

Z 11

4) KOHLENHYDRATE

Glucose dient im Körper zu

- 60% zur Gewinnung thermischer Energie und zu
- 40 % zur ATP-Synthese

Im Magen werden die meisten Kohlenhydrate der Nahrung in Glucose zerlegt. Diese gelangt in den Blutkreislauf:

A) im Magen: lange Kohlenhydrate → Glucose

Glucose wird im Körper zu "Brenztraubensäure" (Anion: "Pyruvat") abgebaut:

B) "Glycolyse": Glucose→ Brenztraubensäure (Pyruvat)

Gespeichert wird Glucose im Körper als Glycogen: (hauptsächlich in Leber und Muskel)

C) "Glycogensynthese": Glucose → Glycogen

Bei Bedarf wird Glucose aus Glycogen freigesetzt:

D) "Glycogenabbau" : Glycogen → Glucose

In Mangelsituationen kann Glucose aus Glycerin, Milchzucker, Brenztraubensäure oder bestimmten Aminosäuren aufgebaut werden:

E) "Gluconeogenese": Milchzucker (Lactat) oder Pyruvat oder bestimmte AS oder Glycerin → Glucose

4.1. DIE GLYCOLYSE

$$C_6 \longrightarrow 2C_3 + \underbrace{\text{Energie}}$$

In der Glycolyse wird Glucose (C_6 -Molekül) in 2 Moleküle Brenztraubensäure (C_3 -Molekül) umgesetzt. Dabei werden pro Glucose Molekül 2 ATP und 2 NADH/ H^+ gebildet. Das entspricht in Summe 8 ATP (1 NADH/ H^+ entspricht 3 ATP)

Das Anion der Brenztraubensäure heißt "Pyruvat".

4.2 UMWANDLUNG DER BRENZTRAUBENSÄURE

a) Bei mäßiger körperlicher Belastung wird die Brenztraubensäure in ein Essigsäuremolekül umgewandelt. Dieses ist an Coenzym A gebunden: "Acetyl-Coenzym A". Dabei wird CO₂ abgespalten und 1 NADH/H⁺ gebildet:

NAD+ NADH/H+

OH

OH

S-"CoA"

(Brenztraubensäure)
$$CO_2$$
 (Acetyl-Coenzym A)

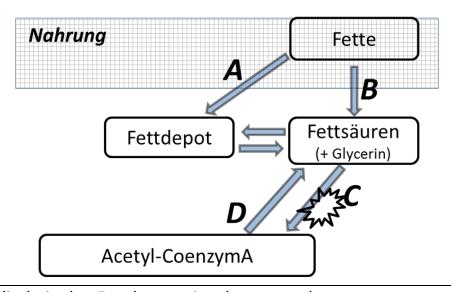
 $C_3H_4O_3$

b) Bei **starker Belastung** kommt es zu einer zu einer Anhäufung von **Brenztraubensäure**. Deshalb wird ein Teil **zu Milchsäure** (Anion: Lactat) umgebaut. Dabei wird ein Molekül NADH/H⁺ verbraucht (zu NAD⁺ umgewandelt):

NADH/H⁺ NAD⁺
OH
OH
(Brenztraubensäure)
$$C_3H_4O_3$$
(Milchsäure)
 $C_3H_6O_3$

c) Hefepilze können unter anaeroben Bedingungen (ohne Sauerstoff) Ethanol aus Brenztraubensäure erzeugen. Dabei wird NADH/H⁺ verbraucht und CO₂ erzeugt.

NADH/H⁺ NAD⁺
OH


(Brenztraubensäure)
$$CO_2$$
 (Ethanol)
 $C_3H_4O_3$ C_2H_6O

4.3 DER GLYCOGENSPEICHER

Bei Bedarf speichert der Körper Glucose in Form von Glycogen und kann daraus bei Bedarf auch wieder Glucose frei setzen.

Glycogen ist ein langkettiges, verzweigtes Molekül aus α -D-Glucosen. Speicherorte sind hauptsächlich die Muskeln und die Leber.

5) FETTE

Fette können direkt in den Fettdepots eingelagert werden:

A) Fett → Fettdepot

Zum weiteren Abbau müssen die Fette in Glycerin und Fettsäuren gespalten werden (Esterhydrolyse):

B) Fett → Glycerin und Fettsäuren

Acyl-Coenzym-A wird in der β-Oxidation zu mehreren Acetyl-Coenzym-A Bruchstücken abgebaut: (Bildung: 1 NADH/H⁺ und 1 FADH₂ pro Fettsäurespaltung)

C) " β -Oxidation": Acyl-Coenzym-A \rightarrow n Acetyl-Coenzym-A

Wenn genügend Acetyl-Co-Enzym-A vorhanden ist, können daraus wieder Fettsäuren und anschließend Fettmoleküle hergestellt werden:

D) "Fettsäuresynthese": Acetyl-Coenzym-A → Fettsäure → Fett

Zusammenfassung Kapitel 11

Z 11

Hinweis: Glycerin kann in die Glycolyse eingeschleust werden.

(Verbrauch: 1 ATP; Bildung: 1 FADH₂): Glycerin geht in die Glycolyse

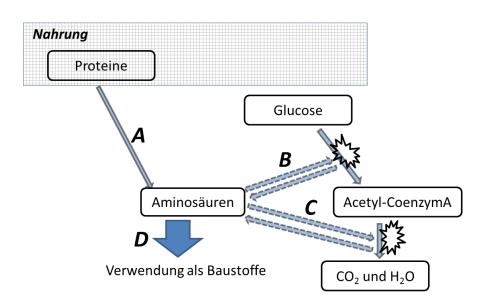
Die Fettsäuren werden in einen Coenzym-A Ester ("Acyl-Coenzym-A") umgewandelt.

(Verbrauch: 1 ATP pro Fettsäure): Fettsäure + Coenzym A → "Acyl-Coenzym-A"

[Hinweis: **Acyl** = allgemeiner Säurerest; **Acetyl** = Essigsäurerest)

5.1 DIE BETA-OXIDATION

Bei der β-Oxidation wird Acyl-Coenzym-A zu mehreren Acetyl-Coenzym-A


Bruchstücken abgebaut: (Bildung: 1 NADH/H⁺ und 1 FADH₂ pro Fettsäurespaltung)

Z.B.: Die häufigste Fettsäure hat 18 Kohlenstoffe (Stearinsäure)

$$C_{18} \longrightarrow 9 C_2 +$$
 Energie

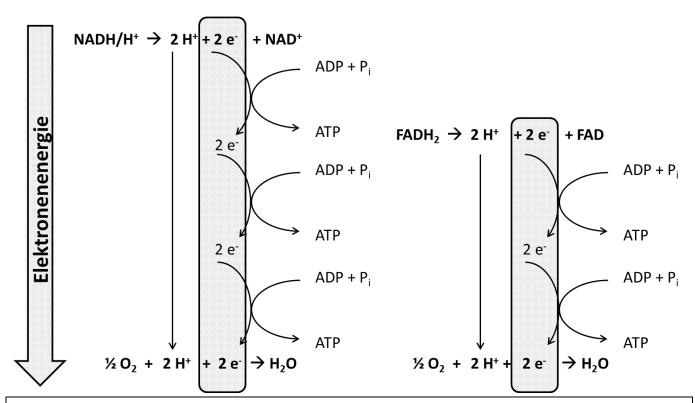
Dabei wird die **Fettsäure 8-mal** gespalten: Es werden demnach 8 FADH₂ und 8 NADH/H⁺ gebildet. **Das entspricht gesamt 40 ATP**.

6) PROTEINE

- A) Proteine werden in ihre Aminosäuren zerlegt.
- ein Teil der Aminosäuren wird
- B) in der Gluconeogenese verwendet (glucogene AS)
- C) im Citratcyclus abgebaut (ketogene AS)
- D) Ein Teil der Aminosäuren wird zur Synthese von Proteinen und anderer Moleküle verwendet

7) DER CITRATCYCLUS

$$C_2 \longrightarrow 2 CO_2 +$$


Im Citratcyclus wird Acetyl-Coenzym-A zu Kohlendioxid abgebaut. Dieses CO₂ wird ausgeatmet. (Bildung: 1 GTP, 3 NADH/H⁺, 1 FADH₂)

Das gebildete "GTP" (Guanosintriphosphat) entspricht der Energie eines ATP.

Es entstehen also 12 ATP-Äquivalente.

8) DIE ATMUNGSKETTE

Die Atmung dient zur Aufnahme von Sauerstoff (und zur Abgabe von Kohlendioxid). Der Sauerstoff wird benötigt um aus den Reduktionsäquivalenten NADH/H⁺ und FADH₂ aus ADP und einem Phosphat (P_i) wieder ATP herzustellen:

Die Atmungskette vervollständigt somit die Oxidationsgleichung von Glucose: $C_6H_{12}O_6 + 6 O_2 \rightarrow 6H_2O + 6 CO_2$ über die Glycolyse und den Citratcyclus.

Anhang:

Strukturen:

ATP besteht aus der Base "Adenin", aus einem Ribosemolekül und drei Phosphatresten. Die Einheit aus Adenin und Ribose heißt "Adenosin": Phosphat-Phosphat-Ribose-Adenin

NAD⁺ besteht aus Nicotinamid an einer Ribose mit 2 Phosphaten, gefolgt von einer weiteren Ribose (= "Dinucleotid") und Adenin: Nicotinamid-Ribose-Phosphat-Phosphat-Ribose-Adenin

(es gibt von diesem Molekül auch eine zusätzlich phophorylierte Form: NADP⁺)

FAD besteht aus Flavin an einer Ribose mit 2 Phosphaten, gefolgt von einer weiteren Ribose (= "Dinucleotid") und Adenin: Flavin-Ribose-Phosphat-Phosphat-Ribose-Adenin